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A CONVENIENT AND GENERAL SYNTHESIS OF

5-VINYLHEXOFURANOSIDES FROM 6‘HAL0—6-DEOXYPYRAN()SIDES.I
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Abstract: The synthesis of five different 5,6-dideoxyhex-5-enofuranosides (5, 7, 9 and 11)
proceeds in 30-60% overall yield in two steps from commercially available 1-O=methyY pyranc-
sides by reductive g-elimination of the intermediate 6-bromo-6-deoxypyranosides.

We desired a test of the idea that reductive R-elimination of CH30X from a 1-0-methyl-
3,4-disubstituted-5-halomethyltetrahydropyrane (A) could lead to the formation of the §,e-
unsaturated aldehyde functionality (B) present in masked form in A (eq 1). Realization of this
transformation might enable us to use the chirality at C-5 of A to induce asymmetry in some
other part of the molecule (— R* —) during its formation, then unmask the §,e-unsaturated
aldehyde moiety to obtain the desired product in an optically active form.
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The practicality of the above approach to the asymmetric synthesis of natural products in
which we are interested depends on two things: (1) having an inexpensive and convenient source
of C-5 chiral A and (2) establishing that annulation of the "— R — portion onto a suitable 5-
halomethy1-3,4-dehydrooyrane to give A occurs with acceptable asymmetric induction. Since these
two requirements can be satisfied, in principle, by the use of the D-pyranose form of carbo-
hydrates and their simple derivatives, we examined the reductive p-elimination of a series of
(D)-1-0-methy1-6-halo-6-deoxypyranosides as a model system for the transformation shown in eq 1.

We report now that our study has resulted in a convenient and general synthesis of 5,6-
dideoxyhex-5-enofuranosides from readily available carbohydrates in two steps (30-60% overall
yield). This synthetic development has general importance because of the current interest in
5,6-dideoxyhex-5-enofuranosyl nuc]eosides,4 5-deoxyhexofuranosyl g]ycosides3 and various 5-
substituted5 analogues derivable from 5-vinylhexofuranosides (eq 2) as chemotherapeutic
agents.6 In particular, our new method is applicable to the preparation of L-5-vinylhexofurano-
sides and 2-deoxy-D or L-5-vinylhexofuranosides, which have been prepared previously by much
less efficient routes.4a
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The 6-bromo-6-deoxypyranosides required for the reductive g-elimination reaction can be
prepared from 1-0-methyl pyranosides, many of which are commercially available, by the method
of Hanessian et al. involving treatment of the Q-methyl glycoside with NBS, Ph3P and DMF.7b
This reaction works well for most unprotected pyranosides (Table 1), except galactose, which
must be converted to its 6-bromo-6-deoxy derivative via either the intermediate 1,2:3,4-di-0-
isopropylidene pyranoside,8 or the 1-0-methyl-4,6-benzylidene aceta'l.9 The latter method
worked best in our hands for the preparation of 1-0-methyl-6-bromo-6-deoxygalactoside (3). The
analogous O-methyl 6-chloro-6-deoxypyranosides can be prepared by reaction of their methyl
glycosides with mesyl chloride and DMF.10

Table 1. Preparation of 1'(_)_-Methy1--6—Bromo-6~deoxypyranos1'desa

b

Starting glycoside Product Yield (%)

Methyl-a-D-glucose 1(a)-0-Methy1-6-bromo- 80
6-deoxyglucose (1a)7b

Methyl-g-D-glucose 1(8)-0-Methy1-6-bromo- 82
6-deoxyglucose (1b)9

Methy1-o-D-mannose 1(a)-0-Methy1-6-bromo- 78
6-deoxymannose (2)11

Methyl-a-D-galactose 1(a)-0-Methy1-6-bromo- 45C
6-deoxygalactose (3)9

Methy1-a-D-2-deoxygalactose 1(a)-0-Methy1-6-bromo- 49

2,6-dideoxygalactose (4)d

& products had spectral and physical properties consistent with the Titerature data.
bLiterature preparation given by superscript. Coverall in three steps. dmp 79-87°C (EtOH,
amorph crys); [u]g4 = +135° (CH30H).

The reductive B-elimination of CH3OX from compounds 1-5 proceeded well with only one re-
ducing agent, the highly active Zn° made from the reduction of ZnC12 with metallic potassium in
THF according to Rieke and Uhm..|2 The 6-bromo-6-deoxypyranosides were inert to all other
activated forms of Zn dust [acid-washed; Hg, Cu, or Ag couples] in refluxing MeOH, although
acid-washed Zn dust in aqueous ethanolic NH4C1]3 gave a low yield of the reductive g-elimination
product from la after prolonged reaction time. Treatment of the 6-chloro-6-deoxy analogue of
la with Cr(II) salts, a method that is known to be successful for reductive g-elimination,
gave very low yields of the desired elimination product, but the 6-chloro-6-deoxy analogues of
1-3 were inert to even the highly active Zn reagent. We note an independent report that the
perbenzylated derivatives of 1 give the reductive g-elimination product analogous to those we
obtain from 1-4 on treatment with acid-activated In (65-88% yield), or with n-butyl 1ithium.15

The results of the treatment of compounds 1-4 with Rieke's Zn are listed in Table 2. The
product 5,6-dideoxyhex-5-enofuranosides were isolated as their peracetylated derivatives (5—11)
for convenience only, and were always accompanied by small amount of the products (§—lg)
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resulting from C-6 reductive dehalogenation without accompanying B-elimination. [The latter
are the sole product when 6-bromo-6-deoxypyranosides are treated with Zn in glacial Ac0H.16]
Acetates 5-11 were obtained as a mixture of C-1 anomers, reflecting the expected thermodynamic
distribution of anomers resulting from cyclization of the intermediate §,e-unsaturated aldehyde
C (eq 3). 15 We isolated this intermediate, obtained from the reductive B-elimination of
peracety]-lg, as its 2,3,4-triacetate, but the latter proved unstable to chromatography or
aqueous base. This property is consistent with the expected ease of its BR-elimination, e.g.,

to D or to similar products. >
_ 0
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Table 2. Products from the Reductive g-Elimination of 1- 0-Methy1-6- Bromdl6- é%oxypyranos1des

6-Bromo-6-deoxypyranoside Products®
g-elimination (% yield) Reduction; % yield.
la 5 L0 oAc  (70) Ha)-0-Methy1-2,3,4-
- " Ac triacetyl-6-deoxy-
glucose (6); 13.
1b 5 (73-75) 1(g) anomer of 6; 10.

0
2 7 WAC (65-69) 1{x.)-0-Methy1-2,3,4-
triacetyl-6-deoxy-

galactose (8); 14-19.

3 9 "ONmone  (68) 1(a)-0-Methy1-2,3,4-
triacetyl-6-deoxy-
Ac mannose (10); 1
4 n OGpac  (70) 1(c)-0-Methy1-3,4-diacetyl-
M 2,6-dideoxygalactose

(12); 9.

3A11 new compounds had ir, ms, and nmr spectral data fully consistent with the assigned
structure.

The results of our study reveal one point of mechanistic information about the reductive
g-elimination reaction of compounds J-g. Since the C-1 configuretion of 1 did not affect the
product distribution (or qualitative reaction rate, noticeably), it appea;s that the g-
elimination reaction does not proceed in a concerted manner. That is, if this were true, 1b
could have reacted much faster than la, or la not have given 5 only 6, since the or1entat1on
of the 0 C5 and C OCH bonds in 1b are anti and coplanar, but orthogonal in la. 17
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Our mechanistic conclusion rests on the presumption that even if the reductive R-elimination
proceeds in two discrete steps, high stereoelectronic constraints would still have disfavored
la going to S.

A representative general procedure for the synthesis of compounds 5-12 is as follows:

Freshly dried ZnCl, (1.8 g, 110°-130°C @ 1 Torr, 3 h) was partially fused by heating with a
flame under a N, atmosphere. After cooling of the fused mass to rm temp, THF (20 mL freshly
distilled from E1A1H4) was added to the ZnClp followed by the addition of K metal (0.8 g)}. The
mixture was heated under N, at reflux with stirring until a vigorous reaction took place. The
heat source was removed as necessary to control the reaction rate until the initial vigorous
reaction had subsided, after which the mixture was refluxed another 3 h under N». After cooling
the reaction mixture to rm temp, absolute MeOH (50 uplL), then the 6-bromo-6-deoxypyranoside

(200 mg) in absolute MeOH (0.5 mL) were added and the reaction mixture stirred at rm temp for
12-16 h. The resulting mixture was filtered through a Celite pad, the Celite washed with MeOH,
and the combined filtrates were evaporated to dryness in vacuo. The resulting grayish-white
oily residue was acetylated (Acp0, 3 mL; pyridine, 3 mL; rm temp:; overnight). The yellowish

0il resulting from work-up of tﬁe acetylation reaction (ice-Et,0 followed by washings with 1N
HC1, ag. NaHCO3, and water; drying (Na 504) and solvent remova%) was purified by column chromato-
graphy on silica gel {60 g) using ske]?yso]ve B:EtOAc (5:1) as eluant.
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